
International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 734

ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

Parallelization approaches for the simulation of
large-scale multibody systems
M. Klöppel1,*, M. Flehmig2, A. Naumann1, M. Walther2, V. Waurich3, J. Wensch1

Abstract— Virtual prototyping plays an important role in the engineering disciplines. The possibility to model and simulate prototypes on a

computer instead of building real-world ones saves time and money. Nowadays, engineers can rely on special tools like object-oriented

modeling languages, e.g., Modelica, to describe their models. These models can be automatically processed and simulated using standard

Differential Algebraic Equation (DAE) solvers. The advantage of this approach is that the practitioners can concentrate themselves on

modeling, whereas the numerical intricacies of the simulation are handled by the software. The disadvantage is that such simulations are

usually slower than implementations which are parallelized and optimized by hand. In this contribution, we concentrate on the widely used

simulation software OpenModelica, which is open source and thus appropriate to evaluate several parallelization approaches.The

implemented methods are demonstrated on engineering examples.

Index Terms— Modeling, Multibody Systems Simulation, Parallelization, Task Graph Parallelism

——————————  ——————————

1 INTRODUCTION

HE advent of virtual prototyping had a decisive influence
on the engineering sciences. The possibility to simulate
complex and large-scale models instead of building real-

world prototypes allows to save costs and shorten development
cycles. Nowadays, a plethora of commercial and open-source
simulation software exists. While the current release of these
programs is quite powerful, simulating large-scale and/or
multi-domain models is still computationally challenging, i.e.,
even the simulation of short time periods might take a consid-
erable amount of computation time. The parallel execution of
the computational workload (under consideration of data de-
pendencies) using modern multi-processor hardware is one
way to reduce the computation time.

In this paper we evaluate several parallelization approaches.
Our main goal here is to give suggestions to the developers of
simulation codes, i.e., we are not looking for the best way to
parallelize a specific problem but consider methods, which are
applicable to a wide range of systems. This approach results in
some special requirements on the investigated methods. Be-
sides the obvious requirement of speeding up the computation,
we focused on methods that can be applied without the inter-
action of the user. Here, we concentrate on the special case of
(rigid) multibody system simulation and the open-source soft-
ware OpenModelica (http://openmodelica.org), but the sug-
gested algorithms will be useful in other simulation codes as
well.

We use the suggestions in [1] as inspiration for choosing par-
allel methods. In addition we consider general linear methods
in the form of peer methods [2]. There have been other attempts
of parallelization in the Modelica field, namely ParModelica [3]
and Transmission Line Modelling (TLM) [4]. These approaches

are not considered here for the following reasons. ParModelica
extends the Modelica language standard by parallel constructs,
i.e., the user has to specify tasks, which can be carried out in
parallel. This contradicts our second requirement. TLM decou-
ples the model using so called transmission line elements and
solves the resulting system using co-simulation approaches.
This again requires user interaction for defining the elements,
which requires a significant amount of in-depth knowledge.
Additionally, the TLM system is not algebraically equivalent to
the original problem, i.e., the TLM approach might result in a
completely different solution.

Here, we consider general multibody systems with the fol-
lowing equations of motion

𝑀(𝑞)𝑞̈ = 𝑓(𝑡, 𝑞, 𝑞̇) − (
𝜕𝑔(𝑞)

𝜕𝑞
)

𝑇

𝜆, (1)

0 = 𝑔(𝑞), (2)

where q(t) ∈ ℝ𝑛 are position coordinates,
M(q(t)) ∈ ℝ𝑛×𝑛 the positive definite mass matrix,
𝑡 ∈ [𝑡0, 𝑡𝑒] ⊂ ℝ the time, and f ∶ ℝ × ℝn × ℝn → ℝn describes
the applied forces. If the described system contains kinematic
loops, the model equations contain additional constraints of the
form (2), where g ∶ ℝn → ℝm, and Langrange multipliers
𝜆(t) ∈ ℝm. Within the OpenModelica framework a system of
form (1), (2) is transformed into an explicit Ordinary Differen-
tial Equation (ODE) of the form

𝑥̇ = 𝑀̃(𝑥)−1𝑓(𝑡, 𝑥) (3)

where x ∈ ℝ𝑛̃, 𝑀̃(x) ∈ ℝ𝑛̃×𝑛̃ and f̃ ∶ ℝ × ℝ𝑛̃ → ℝ𝑛̃, using index
reduction techniques. A more concise description of this pro-
cess is given in the next section. Please note, that usually
n ≠ ñ can be taken for granted.

The remainder of this paper is structured as follows. Section
2 contains a general overview of the OpenModelica software
and describes how the model equations are derived and the in-
dex reduction to the ODE-case is carried out. Section 3 intro-
duces the benchmarks used throughout the remainder of this

T

1 Institute of Scientic Computing, TU Dresden, 01062 Dres-

den, Germany

2 Center for Information Services and High Performance

Computing, TU Dresden, 01062 Dresden, Germany

3 Chair of Construction Machines and Conveying Technol-

ogy, TU Dresden, 01062 Dresden, Germany

* Corresponding author: michael.kloeppel@tu-dresden.de

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 735

ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

work. Several parallelization approaches for multibody system
simulation are discussed in Section 4. Section 5 summarizes the
presented parallelization techniques and draws conclusions.

2 THE OPENMODELICA ENVIRONMENT - FROM MODEL

DESCRIPTION TO ODE

OpenModelica is an open-source Modelica-based modeling
and simulation environment. The core of OpenModelica is a ca-
pable Modelica compiler, which transforms a textual model de-
scription into an executable simulation program. Modelica is a
model description language which allows modeling of differ-
ential algebraic equations both in the continuous and discrete
time domain. The Modelica modeling language features object-
orientation and acausal modeling (AM). AM means that models
are described with equations that can be rearranged and de-
rived. Causal modeling approaches, e.g., in block-diagram-
modeling have to consist of algorithms which already have a
direction of computation and, therefore, cannot be rearranged.
To give an example for the power of AM, consider the equations
of a simple electrical engine. Depending on the given variables,
the same equations can also be used to describe a generator. The
compiler figures out how the equations have to be rearranged
in order to derive a solvable model. The object-oriented ap-
proach makes modeling very convenient on a graphical user in-
terface. There are various libraries which can be used to model
complex systems in a clear, hierarchical structure as can be seen
in Fig. 1 a) for the example of a simple electrical circuit. The par-
ticular elements, as for example the capacitor, represent a tex-
tual model description containing variables as 𝑣 or 𝑖 and equa-
tions as 𝑖 = 𝐶 ∗ 𝑑𝑒𝑟(𝑣). Connections of elements lead to equa-
tions, which sum up the fluxes to zero and equalizes the poten-
tial variables of the connect ports.

The compilation process of a Modelica Compiler is as fol-
lows: The textual Modelica model is parsed and the objects are
instantiated. The objectoriented, hierarchical structure is de-
stroyed and the result is a list of all equations and variables, i.e.,
the flat Modelica model. This model can be represented as a bi-
partite graph. Fig. 1 b) shows the bipartite graph of the circuit
model, where the square nodes represent the equations and the
circular nodes represent the variables. If a variable exists in an
equation, there is an edge between the corresponding nodes.
The model is still acausal and the next step is to determine a
computation sequence. Therefore, each variable has to be as-
signed to an equation, which is able to solve it. In graph theo-

retical terms, a perfect matching has to be identified. If the sys-
tem is a non-singular ODE or DAE system, every equation-
node can be assigned to an adjacent variable node. In case of
higher index systems, an index reduction method has to be ap-
plied, in order to convert the system into an ODE or index 1
system. Typically the Panthelides index reduction extended
with the dummy derivatives method is applied [5]. In order to
determine the computation sequence of the system, the adja-
cency matrix of the system is rearranged. The adjacency matrix
contains the same information as the bipartite graph, where the
rows correspond to the equations and the columns to the vari-
ables. If the matrix can be transformed to a lower triangular ma-
trix, the main diagonal contains the matching information and
the equations have to be computed from the first to the last row
in order to solve the system. A strictly lower triangular form
cannot be established if there are algebraic loops, which is in
general the case. Thus, only a block-lower-triangular form (BLT
form) can be determined as depicted in Fig. 1 c). The matrix en-
tries inside the upper triangular part form blocks, which corre-
spond to strongly connected components (SCCs) in the bipartite
graph. By applying Tarjans algorithm, these strongly connected
components can be determined [6]. If the BLT form is derived,
the computation sequence is represented by the entries and
blocks on the main diagonal. Blocks that belong to just one en-
try belong to single equations and blocks that contain multiple
entries belong to equation systems, which have to be solved as
a whole. In order to solve the DAE system, the derivatives of
the state variables have to be computed. If all state derivatives
are solved, a numerical time integration method can be applied
to compute the state variables of the next time step.

3 BENCHMARKS

The parallelization approaches are tested on the following two
benchmark examples, which are extremes in a certain sense. In
the N-pendulum example, the mass matrix M is fully populated
whereas in the Spring-Mass-Damper network it is just a diago-
nal matrix and, therefore, easily invertible. Furthermore, the Ja-
cobian is dense in the N-pendulum case while it is sparse in
Spring-Mass-Damper network case. Real world examples usu-
ally fall between these two extremes. Both problems are de-
picted in Fig. 2. All computational experiments were conducted

Fig. 1 Different stages of a Modelica model in the compilation process a)
graphical model representation b) bipartite graph of flat Modelica c) BLT
matrix of causalized system.

Fig. 2 The N-Pendulum (a) and a part of the Spring-Mass-Damper net-
work (b).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 736

ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

on the Taurus high performance computing system at TU Dres-
den, which, at the time of writing, is listed on rank 77 of the top
500 supercomputers (http://www.top500.org/list/2015/11/,
accessed on December 1st, 2015.). The newest extension of Tau-
rus consists of Xeon E5-2680v3 processors with 12 cores per pro-
cessor and a clock speed of 2.5 GHz. Furthermore, each proces-
sor core has access to a maximum of 1.7 GB of RAM. One of
these processors was used througout the measurements. The
experiments ran exclusively on this processor with a maximum
of eight CPU cores. All experiments used the C++ runtime
within OpenModelica, unless otherwise mentioned. The mod-
els were translated using OpenModelica version 1.9.3 and the
generated code was compiled using g++ version 4.9. Only the
optimization flag “-O0” was used. Higher optimizations levels
are not feasible (at least at the present state of the C++ runtime),
because they significantly increase the compilation time. Since
CVode [7] is the standard ODE-solver within the runtime, we
take CVode computation times as reference.

3.1 N-pendulum

The first problem is a mathematical N-pendulum, which is
given by

(
𝜑̇

𝜓̇
) = (

𝜓

𝑀(𝜑)−1𝐹(𝜑, 𝜓)
),

where 𝑀(𝜑) ∈ ℝ𝑁×𝑁, 𝐹(𝜑, 𝜓) ∈ ℝ𝑁 with

𝑀𝑗𝑘(𝜑) = (𝑁 − max(𝑗, 𝑘) + 1) cos(𝜑𝑘 − 𝜑𝑗),

𝐹𝑗(𝜑, 𝜓) =
𝑔

𝑙
(𝑁 − 𝑗 + 1) sin 𝜑𝑗

+ (𝑁 − 𝑗 + 1) ∑ sin(𝜑𝑘 − 𝜑𝑗)

𝑗−1

𝑘=1

𝜑̇𝑘
2

+ ∑ (𝑁 − 𝑘 + 1)

𝑁

𝑘=𝑗+1

sin(𝜑𝑘 − 𝜑𝑗) 𝜑̇𝑘
2,

Here, 𝜑 is the angle as shown in Fig. 2 and 𝜓 the angular veloc-
ity. The parameters 𝑔 and 𝑙 are the standard gravity and the
length of a segment of the N-pendulum, respectively.

3.2 Spring-mass-damper network

The second problem is a spring-mass-damper network contain-
ing N masses. The equations of motion are given by

(
𝜂̇

𝜉̇
) = (

𝜉

𝑀−1𝐹(𝜂, 𝜉)
),

where 𝑀 ∈ ℝ𝑁×𝑁, 𝐹(𝜂, 𝜉) ∈ ℝ𝑁 with 𝑀 = 𝑑𝑖𝑎𝑔(𝑚1, … , 𝑚𝑁),

𝐹𝑗(𝜂, 𝜉) = ∑ [−𝑘𝑖𝑗
𝜂𝑖−𝜂𝑗

‖𝜂𝑖−𝜂𝑗‖
(‖𝜂𝑖 − 𝜂𝑗‖ − 𝑙𝑖𝑗) − 𝜇𝑖𝑗(𝜉𝑖 − 𝜉𝑗)]𝑖∈𝑁(𝑗)

Here, 𝜂 are the positions whereas 𝜉 are the velocities of the
masses. The parameters 𝑘𝑖𝑗 and 𝜇𝑖𝑗 describe the spring constant
and damping factor of the spring-damper connecting the

masses 𝑖 and 𝑗, respectively, whereas 𝑙𝑖𝑗 describes its length.
The function 𝑁(𝑗) returns all neighboring masses of mass 𝑗,
i.e.,all masses 𝑖, which are directly connected to mass 𝑗 via a
spring-damper.

4 PARALLELIZATION APPROACHES

As mentioned in the introduction, we are following the sugges-
tions of Burrage [1] and consider the following approaches to
parallelization:

1. parallel linear algebra,
2. parallelism across the method (inherently parallel

methods),
3. parallelism across the steps (parallel computation of

several time steps),
4. parallelism across the system (parallelism in the eval-

uation of the right hand side of (3)).

These approaches are not mutually exclusive, e.g., parallel

linear algebra can be combined with a parallelism across the
system and a parallelism across the method approach. Such a
setup could benefit from several sources of parallelism, which
could be implemented on different architectures, e.g., parallel
linear algebra on a shared memory basis using OpenMP [21]
combined with an inherently parallel method based on distrib-
uted memory with MPI [26]. In addition to the methods given
in [1] we also consider parallel peer methods [8].

4.1 Parallel linear algebra

Parallel linear algebra is probably the easiest way to parallelize
a given application. Modern implementations of the LAPACK
and BLAS routines, like OpenBLAS [9], automatically scan for
possible parallelism and choose their number of threads ac-
cordingly. On modern processors, parallelism shows ad-
vantages for linear systems involving dense matrices with di-
mension exceeding 1000 × 1000 [10], [11]. Such matrices usu-
ally do not occur in the code generated by OpenModelica. For
instance, one would need to simulate a 1000-pendulum to ob-
tain problems of such size, but such large problems do not even
compile on present day hardware, at least when using the
OpenModelica compiler. Therefore, parallel linear algebra is
not a feasible choice in our setting. Furthermore it might be
more feasible to employ a sparse linear solver, if the problem
permits. An example for a suitable method is our spring-mass-
damper example, where a speed up of 2.9 can be achieved when
using a sparse solver (see Table 2).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 737

ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

4.2 Parallelism across the method

Several methods with inherent parallelism exist. Parallel
Runge-Kutta methods were investigated in depth in [12]. In
general, this class of methods does not offer much potential for
parallelism, since no parallel Runge-Kutta method of order
higher than four exists. More promising are the parallel iterated
Runge-Kutta methods (PIRK) and their diagonally implicit var-
iants, which implement the Picard iteration based on Gaussian
quadrature rules. The advantage of these methods is that they
can have arbitrary order, depending only on the underlying
quadrature rule. Another parallelization approach is the use of
general linear methods (GLMs). Here, we consider a peer
method. In addition, we consider a way to add parallelism to
any method, which relies on finite differencing to determine the
Jacobian.

4.2.1 General linear methods: A peer method

As one type of GLM we considered the multi-implicit parallel
two-step W method given in [2]. We used a fixed step imple-
mentation with five stages having order five (and order four for
varying step sizes). Table 1 shows that our simple implementa-
tion of the parallel peer method is not much slower than the
sophisticated codes CVode and DASSL. Implementing a varia-
ble step size strategy based on local error control with an em-
bedded method of order two could actually lead to a competi-
tive method. We did not investigate this further due to difficul-
ties of implementing the method in OpenModelica.

4.2.2 Parallel evaluation of Jacobi matrices

Parallel evaluation of the Jacobian is a rather straight forward
approach whenever a method uses finite differencing for eval-
uating the Jacobian. The advantage of this approach is that
speed ups are obtained whenever the evaluation time of the
right hand side of (3) has a significant influence on the overall
computation time. In order to use the parallel evaluation we im-
plemented a C++ version of the DASKR method [13] and used
parallelization based on OpenMP. Simulation results show a
speed up of 1.1 - 1.2 on two processors (see Tables 1, 2).

Table 1 Computation times for the N-pendulum example with different
solvers, 𝑁 = 50, 𝑡𝑒 = 1 and absolute and relative error tolerance 10−8.

Table 2 Computation times for the spring-mass-damper network example
with N = 1000 elements, different solvers, 𝑡𝑒 = 100 and absolute and
relative error tolerance 10−6.

4.3 Parallelism across the steps

Parallelism across the steps is relatively new area of research,
with the first algorithms being proposed in the 1960s. During
the course of our investigations we considered several methods
of this class: ParaReal [15], P(D)IRKAS [1] and PFASST [16].
Our experiences were twofold. While we obtained speed ups in
the N-pendulum example for the ParaReal method, this re-
quired 32 processors to get a speed up of about 1.7. In addition,
this solution required a manual and tedious adaption of the
method parameters, which violates our second requirement.
With PFASST we had a similar experience, with the sole differ-
ence that we could not even produce speed ups. In theory,
speed ups should be possible for coarse grained systems, but
not for general purpose models. With P(D)IRKAS we actually
obtained speed ups on a reasonbale number of processors, but
only for very small tolerances (10−12 − 10−10), which are, in
most cases, not of interest in engineering.

4.4 Parallelism across the system

Here, we present a method, which automatically parallelizes
the evaluation of the right hand side of arbitrary problems. The
method is based on the task graph, which is introduced in the
following.

4.4.1 Task graph of a model

A task graph is a well known representation for parallelization
problems [17], [18]. Such a graph G is directed, contains a set of
tasks T and a set of edges E as well as information about the
calculation and communication time.

𝐺 ∶= (𝑇, 𝐸, 𝑐, 𝜏)

𝐸 ⊂ 𝑇 × 𝑇

𝑐 ∶ 𝐸 → 𝑅

𝜏 ∶ 𝑇 → 𝑅

A task is an arbitrary calculation problem, which has de-
pendencies to other tasks. These dependencies are descriped by
edges 𝑒 ∈ 𝐸 = (𝑡1, 𝑡2) with the constraint 𝑡1 , 𝑡2 ∈ 𝑇.

Method Computa-
tion Time

Speed Up

CVode 14.05 s -
CppDASSL 11.80 s 1.20
CppDASSL (parallel Jac.) 10.70 s 1.31
Peer 18.95 s 0.74

Method Computa-
tion Time

Speed Up

CVode 12.32 s -
CppDASSL (sparse) 4.24 s 2.91
CppDASSL (sparse, parallel Jac.) 3.56 s 3.46

Fig. 3 The task graph of the model shown in Fig. 1.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 738

ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

Table 3 Measured speed ups for the BranchingDynamicPipes example
from the Modelica Standard library using different scheduling algorithms
and eight cores.

The meaning of such an edge is that the task 𝑡1 has to be evalu-
ated completely before the task 𝑡2 can be calculated. Addition-
ally, the graph holds information about the time that is required
to calculate a task and to communicate the results to another
task if there is an edge between them. These calculation costs
are marked with 𝜏 in the given representation and the commu-
nication costs are descriped by c. The equations of an arbitrary
simulation model can be transformed into such a graph, by us-
ing the SCC representation. First of all, a task is generated for
each SCC of the model. If a variable calculated in SCC 𝑆1 is re-
quired by SCC 𝑆2 for calculation, an edge is added from the task
of 𝑆1 to the task of 𝑆2. If a task has no incoming edges, it is called
a root task or root node. If a task has no outgoing edges, it i s
called a leaf task or leaf node. The level of a task 𝑡 is defined as
the number of tasks that are along the longest path from 𝑡 to a
root task.

As a real world example, the electrical model shown in
Fig. 1 is analyzed further. The corresponding task graph, which
is automatically generated by OpenModelica, is shown in
Fig. 3, the text inside each node represents its unique identifier,
which is just an ongoing number. The solved equations are dis-
played with a blue background in the right uper corner. The
yellow shaded numbers, displayed on the right bottom edge of
each task, represent the required execution time. The numbers

 Table 4 Obtained speed ups for different models from the Modelica Stand-
ard Library using eight cores.

along the edges represent the communication time that is re-
quired to transmit the results of a task from one processing unit
to another. If two tasks are handled by the same processing unit
(e.g. CPU-core), the communication time is zero. The graph
shows that equation 5 has to be solved first. After the calcula-
tion of equation 5, the equation system consisting of equations
3, 1, 6, and 8 can be calculated. Finally, the equations 7, 4, and 2
can be solved in parallel
Since the task graphs can become quite large, even for simple
models, the graph should by simplified as much as possible.
Therefore different graph rewriting rules have been imple-
mented. For the given example, the first two tasks would be
merged into one, because it makes no sense to calculate them
by different processing units.

4.4.2 Scheduling of a task graph

After the task graph creation, a scheduling has to be performed.
Scheduling means that a mapping from the tasks of the task
graph to the available processing-units has to be found. Finding
the best solution is a known NP-hard problem [19], so algo-
rithms use heuristics to create a good solution. Different sched-
uling algorithms were implemented and verified in the context
of OpenModelica. They are divided into static and dynamic al-
gorithms. Static algorithms create a fixed mapping during com-
pile time, dynamic algorithms perform a load balancing at
runtime, to achive a better workload.

The implemented dynamic schedulers were the flow graph

Method Speed Up
Modified Critical Path (MCP) 3.48
List 3.34
Metis 3.67
Level 4.45
Intel TBB 2.95

Model Speed Up
BranchingDynamicPipes (fluid) 4.45
CauerLowPass (electric) 1.9
N-pendulum 1.08

Fig. 4 Error over computation time for different formulations of the N-Pendulum (N = 50) problem combined
with a parallelization across the system approach.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 739

ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

framework of Intel TBB [20] and the task dependency con-
structs of OpenMP 4.0 [21]. Both are simple, because they just
take the graph 𝐺(𝑇, 𝐸) and perform a scheduling and work-
balancing completely automatic. Additionally, a simple semi-
dynamic scheduling algorithm was implemented. It is called
level-scheduler and it calculates all nodes of the same level in
parallel until it starts with the next level. The nodes of the same
level can be dynamically scheduled with the help of OpenMP-
sections.

For the evaluation of static scheduling, the following algo-
rithms were taken into account: list scheduler (breadth first)
[22], breadth first scheduler based on metis partitions [23] and
the modified critical path scheduler [24]. A major drawback of
these static algorithms is that the values of 𝑐 and 𝜏 have to be
accurate and constant over time. Otherwise the scheduling will
not reach the intended performance. By profiling all tasks in a
serial run, good values can be created for simple equations
without trigonometric parts and for linear equation systems.
Especially the computation time of nonlinear equation systems
varies significantly dependent on the structure of the Jacobian.

4.4.3 Results and further analysis

Table 3 shows the speed ups measured for the BranchingDy-
namicPipes example from the Modelica standard library using
the scheduling algorithms from the previous subsection. It is
clear to see that the semi-dynamic level scheduler offers the best
speed up. Therefore, we chose this scheduling algorithm for our
further experiments. Table 4 shows the speed up obtained for
models from different domains within the Modelica library.
The results clearly show that models from the fluid domain
benefit especially well from parallelism across the system. This
is due to the many line elements in the system, which can all be
simulated in parallel. The electric domain also shows a decent
speed up. Similar to the hydraulics example several parts of a
larger network can be handled in parallel. Unfortunately,
nearly no speed ups are obtained for the N-pendulum example.
In the following we will further investigate this behavior.

Looking at the N-pendulum equations, one can see that the
single entries 𝐹𝑖(𝜑, 𝜓), 𝑖 = 1, … , 𝑁 can be evaluated in parallel,
since they do not depend on each other. Nonetheless, nearly no
speed up was obtained. This is due to the fact that in order to
evaluate the 𝑀(𝜑)−1𝐹(𝜑, 𝜓) part, the solution of a linear system
is required. This linear system can only be solved sequentially
and dominates the computation time of the right hand side.

Since we are using either CVode or DASSL as solver it is a
straight forward idea to change the problem formulation (4)
into a residual formulation of the form

(
𝐼 0
0 𝑀(𝜑)) (

𝜑̇

𝜓̇
) = (

𝜓

𝐹(𝜑, 𝜓)
).

Fig. 4 shows errors over computation time for implementations
on one and two processors. Since, at the time of writing,
OpenModelica does not support the residual formulation, the
measurements were taken on a manual implementation. Com-
paring the results for the original implementation (termed ex-
plicit in the figure) and residual formulation (termed implicit)
it is clear that especially for higher errors the residual formula-
tion is actually slower on one processor than the explicit formu-
lation. On the other hand, the residual formulation actually

benefits from parallelization, resulting in a speed up of about
1.5 over the one processor implementation.

The fact that the residual formulation actually takes longer
to solve than the explicit formulation was already observed in
[25]. The reason for this is that the solver needs significantly
more Jacobian evaluations than in the explicit case. The author
of [25] proposed a change in the Jacobian update strategy to
overcome this problem. Given the Jacobian of the residual for-
mulation

𝐽𝑟𝑒𝑠 = 𝛼 (
𝐼 0
0 𝑀(𝜑)) − (

0 𝐼
𝜕𝐹(𝜑, 𝜓)

𝜕𝜑
+

𝜕𝑀(𝜑)

𝜕𝜑
𝜓̇

𝜕𝐹(𝜑, 𝜓)

𝜕𝜓
) ,

where 𝛼 is a method parameter, which is proportional to 1/ℎ
with ℎ the actual step size, the idea is to update only the first
summand of 𝐽𝑟𝑒𝑠 whenever the stepsize and, therefore, 𝛼
changes. The effects of this change are twofold. First, the evalu-
ation costs for the Jacobian are decreased, since no finite differ-
encing is necessary. Second, because the Jacobian matrix is up-
dated proactively, actually fewer convergence failures occur
and, therefore, fewer Jacobian re-evaluations are required. The
effect of this improved update strategy can be seen in Fig. 4 (re-
sults denoted update). The calculations are faster than in the ex-
plicit case even on one processor while the good parallel per-
formance is pertained. Compared with the explicit formulation
on one processor, a speed up of about 2.4 can be reached on two
processors. We later found out that Arnold et al. [14] proposed
the same solution.

5 CONCLUSIONS

In this work we examined several approaches for paralleliza-

tion with the intend of using them in a general multibody sys-

tem simulation code. From our experiments we can offer the

following suggestions:

 If your code permits the residual formulation use it to-

gether with the presented parallelism across the sys-

tem approach.

 Use sparse linear algebra, whenever your problem per-

mits it.

 If you have further processors available, using the par-

allel evaluation of the Jacobian results in a further

speed up of 1.1 - 1.2.

 A sophisticated implementation of the parallel peer

method might also result in reasonable speed ups.

Such a method could further be enhanced by parallel-

ism across the system and the parallel evaluation of the

Jacobian.

ACKNOWLEDGMENT

This work was funded by the German Federal Ministry of Edu-
cation and Research (BMBF). A. Naumann is grateful for fund-
ing by the German Research Foundation (DFG) within
CRC/TR 96.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 740

ISSN 2229-5518

IJSER © 2015

http://www.ijser.org

REFERENCES

[1] K. Burrage, Parallel and Sequential Methods for Ordinary Differential Equations.
New York, NY, USA: Clarendon Press, 1995.

[2] B. Schmitt, R. Weiner, and H. Podhaisky, “Multi-Implicit Peer Two-Step W-
Methods for Parallel Time Integration,” BIT Numerical Mathematics, vol. 45, no.
1, pp. 197-217, 2005.

[3] M. Gebremedhin, “Parmodelica: Extending the Algorithmic Subset of Model-
ica with Explicit Parallel Language Constructs for Multi-Core Simulation,”
Master thesis, University of Linköping, Sweden, 2011.

[4] P. B. Johns and M. O’Brien, “Use of the Transmission-Line Modelling (t.l.m.)
Method to Solve Non-Linear Lumped Networks,” Radio and Electronic Engineer,
vol. 50, pp. 59-70, 1980.

[5] S. E. Mattsson and G. Söderlind, “Index Reduction in Differential-Algebraic
Equations Using Dummy Derivatives,” SIAM Journal on Scientic Computing,
vol. 14, no. 3, pp. 677-692, 1993.

[6] R. Tarjan, “Depth-First Search and Linear Graph Algorithms,” SIAM Journal on
Computing, vol. 1, no. 2, pp. 146-160, 1972.

[7] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker,
and C. S. Woodward, “Sundials: Suite of Nonlinear and Differential Algebraic
Equation Solvers,” ACM Trans. Math. Softw., vol. 31, pp. 363-396, 2005.

[8] B. A. Schmitt and R. Weiner, “Parallel Two-Step W-methods with Peer Varia-
bles,” SIAM Journal on Numerical Analysis, vol. 42, no. 1, pp. 265-282, 2004.

[9] Q.Wang, X. Zhang, Y. Zhang, and Q. Yi, “Augem: Automatically Generate
High Performance Dense Linear Algebra Kernels on x86 CPUs,” in Proceed-
ings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, SC '13, (New York, NY, USA), pp. 1-12, ACM,
2013.

[10] D. Hackenberg, R. Schöne, W. Nagel, and S. Pflüger, “Optimizing OpenMP
Parallelized dgemm Calls on SGI ALTIX 3700,” in Euro-Par 2006 Parallel Pro-
cessing (W. Nagel, W. Walter, and W. Lehner, eds.), vol. 4128 of Lecture Notes
in Computer Science, pp. 145-154, Springer Berlin Heidelberg, 2006.

[11] E. Agullo, B. Hadri, H. Ltaief, and J. Dongarrra, “Comparative Study of One-
Sided Factorizations with Multiple Software Packages on Multi-Core Hard-
ware,“ in High Performance Computing Networking, Storage and Analysis,
Proceedings of the Conference on, pp. 1-12, Nov 2009.

[12] K. R. Jackson and S. P. Nørsett, “The Potential for Parallelism in Runge-Kutta
Methods. Part 1: RK Formulas in Standard Form,” SIAM Journal on Numerical
Analysis, vol. 32, no. 1, pp. 49-82, 1995.

[13] K. Brenan, S. Campbell, and L. Petzold, Numerical Solution of Initial-Value Prob-

lems in Differential-Algebraic Equations. Society for Industrialand Applied Math-
ematics, 1995.

[14] M. Arnold, A. Fuchs, and C. Führer, “Efficient Corrector Iteration for DAE
Time Integration in Multibody Dynamics,” Computer Methods in Applied Me-
chanics and Engineering, vol. 195, no. 50-51, pp. 6958-6973, 2006.

[15] J.-L. Lions, Y. Maday, and G. Turinici, “Résolution d'EDP ar un Schéma en
Temps < Pararéel >,” Comptes Rendus de l'Academie des Sciences. Serie I, Mathe-
matique, vol. 332, no. 7, pp. 661-668, 2001.

[16] M. L. Minion and S. A. Williams, “Parareal and Spectral Deferred Corrections,”
in American Institute of Physics Conference Series (T. E. Simos and C. Tsi-
touras, eds.), vol. 1048 of American Institute of Physics Conference Series, pp.
388-391, Sept. 2008.

[17] Y. Robert, “Task Graph Scheduling,” in Encyclopedia of Parallel Computing
(D. A. Padua, ed.), pp. 2013-2025, Springer, 2011.

[18] P. Aronsson, “Automatic Parallelization of Equation-Based Simulation Pro-
grams.” Institutionen for datavetenskap, 2006.

[19] P. Chretienne, “Tree Scheduling with Communication Delays,” Discrete Ap-
plied Mathematics, vol. 49, no. 1-3, pp. 129-141, 1994.

[20] Intel Corporation, “Threading building blocks (intel tbb)."
https://www.threadingbuildingblocks.org/, Oct. 2015.

[21] O. A. R. Board, “Openmp (open multi-processing) standard."
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf, 2015.

[22] J. Chase, “On the Near-optimality of List Scheduling Heuristics for Local and
Global Instruction Scheduling.” Master thesis, University of Waterloo, Canada,
2007.

[23] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme for
Partitioning Irregular Graphs,” SIAM J. Sci. Comput., vol. 20, pp. 359-392, 1998.

[24] A. Radulescu and A. J. C. van Gemund, “FLB: Fast Load Balancing for Distrib-
uted-Memory Machines.," in ICPP, pp. 534-541, IEEE Computer Society, 1999.

[25] P. Schulz, “Vergleich und Analyse von Zeitintegratoren und Indexreduk-
tionstechniken für DAEs,” Master thesis, TU Dresden, Germany, 2014.

[26] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, S. Huss-Lederman, MPI: The
Complete Reference. MIT Press Cambridge, MA, USA, 1995. IJSER

http://www.ijser.org/

