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Abstract— Virtual prototyping plays an important role in the engineering disciplines. The possibility to model and simulate prototypes on a 

computer instead of building real-world ones saves time and money. Nowadays, engineers can rely on special tools like object-oriented 

modeling languages, e.g., Modelica, to describe their models. These models can be automatically processed and simulated using standard 

Differential Algebraic Equation (DAE) solvers. The advantage of this approach is that the practitioners can concentrate themselves on 

modeling, whereas the numerical intricacies of the simulation are handled by the software. The disadvantage is that such simulations are 

usually slower than implementations which are parallelized and optimized by hand. In this contribution, we concentrate on the widely used 

simulation software OpenModelica, which is open source and thus appropriate to evaluate several parallelization approaches.The 

implemented methods are demonstrated on engineering examples. 

Index Terms— Modeling, Multibody Systems Simulation, Parallelization, Task Graph Parallelism 

——————————      —————————— 

1 INTRODUCTION                                                                     

HE advent of virtual prototyping had a decisive influence 
on the engineering sciences. The possibility to simulate 
complex and large-scale models instead of building real-

world prototypes allows to save costs and shorten development 
cycles. Nowadays, a plethora of commercial and open-source 
simulation software exists. While the current release of these 
programs is quite powerful, simulating large-scale and/or 
multi-domain models is still computationally challenging, i.e., 
even the simulation of short time periods might take a consid-
erable amount of computation time. The parallel execution of 
the computational workload (under consideration of data de-
pendencies) using modern multi-processor hardware is one 
way to reduce the computation time. 

In this paper we evaluate several parallelization approaches. 
Our main goal here is to give suggestions to the developers of 
simulation codes, i.e., we are not looking for the best way to 
parallelize a specific problem but consider methods, which are 
applicable to a wide range of systems. This approach results in 
some special requirements on the investigated methods. Be-
sides the obvious requirement of speeding up the computation, 
we focused on methods that can be applied without the inter-
action of the user. Here, we concentrate on the special case of 
(rigid) multibody system simulation and the open-source soft-
ware OpenModelica (http://openmodelica.org), but the sug-
gested algorithms will be useful in other simulation codes as 
well. 

We use the suggestions in [1] as inspiration for choosing par-
allel methods. In addition we consider general linear methods 
in the form of peer methods [2]. There have been other attempts 
of parallelization in the Modelica field, namely ParModelica [3] 
and Transmission Line Modelling (TLM) [4]. These approaches 

are not considered here for the following reasons. ParModelica 
extends the Modelica language standard by parallel constructs, 
i.e., the user has to specify tasks, which can be carried out in 
parallel. This contradicts our second requirement. TLM decou-
ples the model using so called transmission line elements and 
solves the resulting system using co-simulation approaches. 
This again requires user interaction for defining the elements, 
which requires a significant amount of in-depth knowledge. 
Additionally, the TLM system is not algebraically equivalent to 
the original problem, i.e., the TLM approach might result in a 
completely different solution. 

Here, we consider general multibody systems with the fol-
lowing equations of motion 

𝑀(𝑞)𝑞̈ = 𝑓(𝑡, 𝑞, 𝑞̇) − (
𝜕𝑔(𝑞)

𝜕𝑞
)

𝑇

𝜆,   (1) 

0 = 𝑔(𝑞),     (2) 

where q(t) ∈ ℝ𝑛 are position coordinates, 
M(q(t)) ∈  ℝ𝑛×𝑛 the positive definite mass matrix, 
𝑡 ∈ [𝑡0, 𝑡𝑒] ⊂ ℝ the time, and f ∶  ℝ × ℝn × ℝn →  ℝn describes 
the applied forces. If the described system contains kinematic 
loops, the model equations contain additional constraints of the 
form (2), where g ∶  ℝn →  ℝm, and Langrange multipliers 
𝜆(t) ∈  ℝm. Within the OpenModelica framework a system of 
form (1), (2) is transformed into an explicit Ordinary Differen-
tial Equation (ODE) of the form 

𝑥̇ = 𝑀̃(𝑥)−1𝑓(𝑡, 𝑥)    (3) 

where x ∈ ℝ𝑛̃, 𝑀̃(x) ∈ ℝ𝑛̃×𝑛̃ and f̃ ∶  ℝ × ℝ𝑛̃ →  ℝ𝑛̃, using index 
reduction techniques. A more concise description of this pro-
cess is given in the next section. Please note, that usually 
n ≠ ñ can be taken for granted. 

The remainder of this paper is structured as follows. Section 
2 contains a general overview of the OpenModelica software 
and describes how the model equations are derived and the in-
dex reduction to the ODE-case is carried out. Section 3 intro-
duces the benchmarks used throughout the remainder of this 
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work. Several parallelization approaches for multibody system 
simulation are discussed in Section 4. Section 5 summarizes the 
presented parallelization techniques and draws conclusions. 

2 THE OPENMODELICA ENVIRONMENT - FROM MODEL 

DESCRIPTION TO ODE 

OpenModelica is an open-source Modelica-based modeling 
and simulation environment. The core of OpenModelica is a ca-
pable Modelica compiler, which transforms a textual model de-
scription into an executable simulation program. Modelica is a 
model description language which allows modeling of differ-
ential algebraic equations both in the continuous and discrete 
time domain. The Modelica modeling language features object-
orientation and acausal modeling (AM). AM means that models 
are described with equations that can be rearranged and de-
rived. Causal modeling approaches, e.g., in block-diagram-
modeling have to consist of algorithms which already have a 
direction of computation and, therefore, cannot be rearranged. 
To give an example for the power of AM, consider the equations 
of a simple electrical engine. Depending on the given variables, 
the same equations can also be used to describe a generator. The 
compiler figures out how the equations have to be rearranged 
in order to derive a solvable model. The object-oriented ap-
proach makes modeling very convenient on a graphical user in-
terface. There are various libraries which can be used to model 
complex systems in a clear, hierarchical structure as can be seen 
in Fig. 1 a) for the example of a simple electrical circuit. The par-
ticular elements, as for example the capacitor, represent a tex-
tual model description containing variables as 𝑣 or 𝑖 and equa-
tions as 𝑖 =  𝐶 ∗ 𝑑𝑒𝑟(𝑣). Connections of elements lead to equa-
tions, which sum up the fluxes to zero and equalizes the poten-
tial variables of the connect ports. 

The compilation process of a Modelica Compiler is as fol-
lows: The textual Modelica model is parsed and the objects are 
instantiated. The objectoriented, hierarchical structure is de-
stroyed and the result is a list of all equations and variables, i.e., 
the flat Modelica model. This model can be represented as a bi-
partite graph. Fig. 1 b) shows the bipartite graph of the circuit 
model, where the square nodes represent the equations and the 
circular nodes represent the variables. If a variable exists in an 
equation, there is an edge between the corresponding nodes. 
The model is still acausal and the next step is to determine a 
computation sequence. Therefore, each variable has to be as-
signed to an equation, which is able to solve it. In graph theo-

retical terms, a perfect matching has to be identified. If the sys-
tem is a non-singular ODE or DAE system, every equation-
node can be assigned to an adjacent variable node. In case of 
higher index systems, an index reduction method has to be ap-
plied, in order to convert the system into an ODE or index 1 
system. Typically the Panthelides index reduction extended 
with the dummy derivatives method is applied [5]. In order to 
determine the computation sequence of the system, the adja-
cency matrix of the system is rearranged. The adjacency matrix 
contains the same information as the bipartite graph, where the 
rows correspond to the equations and the columns to the vari-
ables. If the matrix can be transformed to a lower triangular ma-
trix, the main diagonal contains the matching information and 
the equations have to be computed from the first to the last row 
in order to solve the system.  A strictly lower triangular form 
cannot be established if there are algebraic loops, which is in 
general the case. Thus, only a block-lower-triangular form (BLT 
form) can be determined as depicted in Fig. 1 c). The matrix en-
tries inside the upper triangular part form blocks, which corre-
spond to strongly connected components (SCCs) in the bipartite 
graph. By applying Tarjans algorithm, these strongly connected 
components can be determined [6]. If the BLT form is derived, 
the computation sequence is represented by the entries and 
blocks on the main diagonal. Blocks that belong to just one en-
try belong to single equations and blocks that contain multiple 
entries belong to equation systems, which have to be solved as 
a whole. In order to solve the DAE system, the derivatives of 
the state variables have to be computed. If all state derivatives 
are solved, a numerical time integration method can be applied 
to compute the state variables of the next time step. 

3 BENCHMARKS 

The parallelization approaches are tested on the following two 
benchmark examples, which are extremes in a certain sense. In 
the N-pendulum example, the mass matrix M is fully populated 
whereas in the Spring-Mass-Damper network it is just a diago-
nal matrix and, therefore, easily invertible. Furthermore, the Ja-
cobian is dense in the N-pendulum case while it is sparse in 
Spring-Mass-Damper network case. Real world examples usu-
ally fall between these two extremes. Both problems are de-
picted in Fig. 2. All computational experiments were conducted 

Fig. 1 Different stages of a Modelica model in the compilation process a) 
graphical model representation b) bipartite graph of flat Modelica c) BLT 
matrix of causalized system. 

Fig. 2 The N-Pendulum (a) and a part of the Spring-Mass-Damper net-
work (b). 
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on the Taurus high performance computing system at TU Dres-
den, which, at the time of writing, is listed on rank 77 of the top 
500 supercomputers (http://www.top500.org/list/2015/11/, 
accessed on December 1st, 2015.). The newest extension of Tau-
rus consists of Xeon E5-2680v3 processors with 12 cores per pro-
cessor and a clock speed of 2.5 GHz. Furthermore, each proces-
sor core has access to a maximum of 1.7 GB of RAM. One of 
these processors was used througout the measurements. The 
experiments ran exclusively on this processor with a maximum 
of eight CPU cores. All experiments used the C++ runtime 
within OpenModelica, unless otherwise mentioned. The mod-
els were translated using OpenModelica version 1.9.3 and the 
generated code was compiled using g++ version 4.9. Only the 
optimization flag “-O0” was used. Higher optimizations levels 
are not feasible (at least at the present state of the C++ runtime), 
because they significantly increase the compilation time. Since 
CVode [7] is the standard ODE-solver within the runtime, we 
take CVode computation times as reference. 

3.1 N-pendulum 

The first problem is a mathematical N-pendulum, which is 
given by 

(
𝜑̇

𝜓̇
) = (

𝜓

𝑀(𝜑)−1𝐹(𝜑, 𝜓)
), 

where 𝑀(𝜑) ∈ ℝ𝑁×𝑁, 𝐹(𝜑, 𝜓 ) ∈  ℝ𝑁 with 

𝑀𝑗𝑘(𝜑) =  (𝑁 − max(𝑗, 𝑘) +  1) cos(𝜑𝑘 − 𝜑𝑗),  

𝐹𝑗(𝜑, 𝜓 ) =
𝑔

𝑙
(𝑁 −  𝑗 +  1) sin 𝜑𝑗  

+  (𝑁 −  𝑗 +  1) ∑ sin(𝜑𝑘 − 𝜑𝑗)

𝑗−1

𝑘=1

𝜑̇𝑘
2

+ ∑ (𝑁 − 𝑘 + 1)

𝑁

𝑘=𝑗+1

sin(𝜑𝑘 − 𝜑𝑗) 𝜑̇𝑘
2, 

Here, 𝜑 is the angle as shown in Fig. 2 and 𝜓  the angular veloc-
ity. The parameters 𝑔 and 𝑙 are the standard gravity and the 
length of a segment of the N-pendulum, respectively. 

3.2 Spring-mass-damper network 

The second problem is a spring-mass-damper network contain-
ing N masses. The equations of motion are given by 

(
𝜂̇

𝜉̇
) = (

𝜉

𝑀−1𝐹(𝜂, 𝜉)
), 

where 𝑀 ∈  ℝ𝑁×𝑁, 𝐹(𝜂, 𝜉) ∈  ℝ𝑁 with 𝑀 =  𝑑𝑖𝑎𝑔(𝑚1, … , 𝑚𝑁), 

𝐹𝑗(𝜂, 𝜉) = ∑ [−𝑘𝑖𝑗
𝜂𝑖−𝜂𝑗

‖𝜂𝑖−𝜂𝑗‖
(‖𝜂𝑖 − 𝜂𝑗‖ − 𝑙𝑖𝑗) − 𝜇𝑖𝑗(𝜉𝑖 − 𝜉𝑗)]𝑖∈𝑁(𝑗)   

Here, 𝜂 are the positions whereas 𝜉 are the velocities of the 
masses. The parameters 𝑘𝑖𝑗 and 𝜇𝑖𝑗 describe the spring constant 
and damping factor of the spring-damper connecting the 

masses 𝑖 and 𝑗, respectively, whereas 𝑙𝑖𝑗 describes its length. 
The function 𝑁(𝑗) returns all neighboring masses of mass 𝑗, 
i.e.,all masses 𝑖, which are directly connected to mass 𝑗 via a 
spring-damper. 

4 PARALLELIZATION APPROACHES 

As mentioned in the introduction, we are following the sugges-
tions of Burrage [1] and consider the following approaches to  
parallelization: 

 
1. parallel linear algebra, 
2. parallelism across the method (inherently parallel 

methods), 
3. parallelism across the steps (parallel computation of 

several time steps), 
4. parallelism across the system (parallelism in the eval-

uation of the right hand side of (3)).  
 
These approaches are not mutually exclusive, e.g., parallel 

linear algebra can be combined with a parallelism across the 
system and a parallelism across the method approach. Such a 
setup could benefit from several sources of parallelism, which 
could be implemented on different architectures, e.g., parallel 
linear algebra on a shared memory basis using OpenMP [21] 
combined with an inherently parallel method based on distrib-
uted memory with MPI [26]. In addition to the methods given 
in [1] we also consider parallel peer methods [8]. 

4.1 Parallel linear algebra 

Parallel linear algebra is probably the easiest way to parallelize 
a given application. Modern implementations of the LAPACK 
and BLAS routines, like OpenBLAS [9], automatically scan for 
possible parallelism and choose their number of threads ac-
cordingly. On modern processors, parallelism shows ad-
vantages for linear systems involving dense matrices with di-
mension exceeding 1000 ×  1000 [10], [11]. Such matrices usu-
ally do not occur in the code generated by OpenModelica. For 
instance, one would need to simulate a 1000-pendulum to ob-
tain problems of such size, but such large problems do not even 
compile on present day hardware, at least when using the 
OpenModelica compiler. Therefore, parallel linear algebra is 
not a feasible choice in our setting. Furthermore it might be 
more feasible to employ a sparse linear solver, if the problem 
permits. An example for a suitable method is our spring-mass-
damper example, where a speed up of 2.9 can be achieved when 
using a sparse solver (see Table 2). 
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4.2 Parallelism across the method 

Several methods with inherent parallelism exist. Parallel 
Runge-Kutta methods were investigated in depth in [12]. In 
general, this class of methods does not offer much potential for 
parallelism, since no parallel Runge-Kutta method of order 
higher than four exists. More promising are the parallel iterated 
Runge-Kutta methods (PIRK) and their diagonally implicit var-
iants, which implement the Picard iteration based on Gaussian 
quadrature rules. The advantage of these methods is that they 
can have arbitrary order, depending only on the underlying 
quadrature rule. Another parallelization approach is the use of 
general linear methods (GLMs). Here, we consider a peer 
method. In addition, we consider a way to add parallelism to 
any method, which relies on finite differencing to determine the 
Jacobian. 

4.2.1 General linear methods: A peer method 

As one type of GLM we considered the multi-implicit parallel 
two-step W method given in [2]. We used a fixed step imple-
mentation with five stages having order five (and order four for 
varying step sizes). Table 1 shows that our simple implementa-
tion of the parallel peer method is not much slower than the 
sophisticated codes CVode and DASSL. Implementing a varia-
ble step size strategy based on local error control with an em-
bedded method of order two could actually lead to a competi-
tive method. We did not investigate this further due to difficul-
ties of implementing the method in OpenModelica. 

4.2.2 Parallel evaluation of Jacobi matrices 

Parallel evaluation of the Jacobian is a rather straight forward 
approach whenever a method uses finite differencing for eval-
uating the Jacobian. The advantage of this approach is that 
speed ups are obtained whenever the evaluation time of the 
right hand side of (3) has a significant influence on the overall 
computation time. In order to use the parallel evaluation we im-
plemented a C++ version of the DASKR method [13] and used 
parallelization based on OpenMP. Simulation results show a 
speed up of 1.1 - 1.2 on two processors (see Tables 1, 2). 
 
 

Table 1 Computation times for the N-pendulum example with different 
solvers, 𝑁 =  50, 𝑡𝑒  =  1 and absolute and relative error tolerance 10−8. 

 
Table 2 Computation times for the spring-mass-damper network example 
with N = 1000 elements, different solvers, 𝑡𝑒  =  100 and absolute and 
relative error tolerance 10−6. 

 

4.3 Parallelism across the steps 

Parallelism across the steps is relatively new area of research, 
with the first algorithms being proposed in the 1960s. During 
the course of our investigations we considered several methods 
of this class: ParaReal [15], P(D)IRKAS [1] and PFASST [16]. 
Our experiences were twofold. While we obtained speed ups in 
the N-pendulum example for the ParaReal method, this re-
quired 32 processors to get a speed up of about 1.7. In addition, 
this solution required a manual and tedious adaption of the 
method parameters, which violates our second requirement. 
With PFASST we had a similar experience, with the sole differ-
ence that we could not even produce speed ups. In theory, 
speed ups should be possible for coarse grained systems, but 
not for general purpose models. With P(D)IRKAS we actually 
obtained speed ups on a reasonbale number of processors, but 
only for very small tolerances (10−12 − 10−10), which are, in 
most cases, not of interest in engineering. 

4.4 Parallelism across the system 

Here, we present a method, which automatically parallelizes 
the evaluation of the right hand side of arbitrary problems. The 
method is based on the task graph, which is introduced in the 
following. 

4.4.1 Task graph of a model 

A task graph is a well known representation for parallelization 
problems [17], [18]. Such a graph G is directed, contains a set of 
tasks T and a set of edges E as well as information about the 
calculation and communication time. 

𝐺 ∶= (𝑇, 𝐸, 𝑐, 𝜏 ) 

𝐸 ⊂  𝑇 ×  𝑇 

𝑐 ∶  𝐸 →  𝑅 

𝜏 ∶  𝑇 →  𝑅 

A task is an arbitrary calculation problem, which has de-
pendencies to other tasks. These dependencies are descriped by 
edges 𝑒 ∈  𝐸 =  (𝑡1, 𝑡2) with the constraint 𝑡1 , 𝑡2 ∈  𝑇.  

Method Computa-
tion Time 

Speed Up 

CVode 14.05 s - 
CppDASSL 11.80 s 1.20 
CppDASSL (parallel Jac.) 10.70 s 1.31 
Peer 18.95 s 0.74 

Method Computa-
tion Time 

Speed Up 

CVode 12.32 s - 
CppDASSL (sparse) 4.24 s 2.91 
CppDASSL (sparse, parallel Jac.) 3.56 s 3.46 

Fig. 3 The task graph of the model shown in Fig. 1. 
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Table 3 Measured speed ups for the BranchingDynamicPipes example 
from the Modelica Standard library using different scheduling algorithms 
and eight cores. 

The meaning of such an edge is that the task 𝑡1 has to be evalu-
ated completely before the task 𝑡2 can be calculated. Addition-
ally, the graph holds information about the time that is required 
to calculate a task and to communicate the results to another 
task if there is an edge between them. These calculation costs 
are marked with 𝜏 in the given representation and the commu-
nication costs are descriped by c. The equations of an arbitrary 
simulation model can be transformed into such a graph, by us-
ing the SCC representation. First of all, a task is generated for 
each SCC of the model. If a variable calculated in SCC 𝑆1 is re-
quired by SCC 𝑆2 for calculation, an edge is added from the task 
of 𝑆1 to the task of 𝑆2. If a task has no incoming edges, it is called 
a root task or root node. If a task has no outgoing edges, it i s 
called a leaf task or leaf node. The level of a task 𝑡 is defined as 
the number of tasks that are along the longest path from 𝑡 to a 
root task.  

As a real world example, the electrical model shown in  
Fig. 1 is analyzed further. The corresponding task graph, which 
is automatically generated by OpenModelica, is shown in 
Fig. 3, the text inside each node represents its unique identifier, 
which is just an ongoing number. The solved equations are dis-
played with a blue background in the right uper corner. The 
yellow shaded numbers, displayed on the right bottom edge of 
each task, represent the required execution time. The numbers  

 Table 4 Obtained speed ups for different models from the Modelica Stand-
ard Library using eight cores. 

along the edges represent the communication time that is re-
quired to transmit the results of a task from one processing unit 
to another. If two tasks are handled by the same processing unit 
(e.g. CPU-core), the communication time is zero. The graph 
shows that equation 5 has to be solved first. After the calcula-
tion of equation 5, the equation system consisting of equations 
3, 1, 6, and 8 can be calculated. Finally, the equations 7, 4, and 2 
can be solved in parallel 
Since the task graphs can become quite large, even for simple 
models, the graph should by simplified as much as possible. 
Therefore different graph rewriting rules have been imple-
mented. For the given example, the first two tasks would be 
merged into one, because it makes no sense to calculate them 
by different processing units. 

4.4.2 Scheduling of a task graph 

After the task graph creation, a scheduling has to be performed. 
Scheduling means that a mapping from the tasks of the task 
graph to the available processing-units has to be found. Finding 
the best solution is a known NP-hard problem [19], so algo-
rithms use heuristics to create a good solution. Different sched-
uling algorithms were implemented and verified in the context 
of OpenModelica. They are divided into static and dynamic al-
gorithms. Static algorithms create a fixed mapping during com-
pile time, dynamic algorithms perform a load balancing at 
runtime, to achive a better workload. 

The implemented dynamic schedulers were the flow graph 

Method Speed Up 
Modified Critical Path (MCP) 3.48 
List 3.34 
Metis 3.67 
Level 4.45 
Intel TBB 2.95 

Model Speed Up 
BranchingDynamicPipes (fluid) 4.45 
CauerLowPass (electric) 1.9 
N-pendulum 1.08 

Fig. 4 Error over computation time for different formulations of the N-Pendulum (N = 50) problem combined 
with a parallelization across the system approach. 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 739 

ISSN 2229-5518 

 

IJSER © 2015 

http://www.ijser.org  

framework of Intel TBB [20] and the task dependency con-
structs of OpenMP 4.0 [21]. Both are simple, because they just 
take the graph 𝐺(𝑇, 𝐸) and perform a scheduling and work-
balancing completely automatic. Additionally, a simple semi-
dynamic scheduling algorithm was implemented. It is called 
level-scheduler and it calculates all nodes of the same level in 
parallel until it starts with the next level. The nodes of the same 
level can be dynamically scheduled with the help of OpenMP-
sections. 

For the evaluation of static scheduling, the following algo-
rithms were taken into account: list scheduler (breadth first) 
[22], breadth first scheduler based on metis partitions [23] and 
the modified critical path scheduler [24]. A major drawback of 
these static algorithms is that the values of 𝑐 and 𝜏 have to be 
accurate and constant over time. Otherwise the scheduling will 
not reach the intended performance. By profiling all tasks in a 
serial run, good values can be created for simple equations 
without trigonometric parts and for linear equation systems. 
Especially the computation time of nonlinear equation systems 
varies significantly dependent on the structure of the Jacobian. 

4.4.3 Results and further analysis 

Table 3 shows the speed ups measured for the BranchingDy-
namicPipes example from the Modelica standard library using 
the scheduling algorithms from the previous subsection. It is 
clear to see that the semi-dynamic level scheduler offers the best 
speed up. Therefore, we chose this scheduling algorithm for our 
further experiments. Table 4 shows the speed up obtained for 
models from different domains within the Modelica library. 
The results clearly show that models from the fluid domain 
benefit especially well from parallelism across the system. This 
is due to the many line elements in the system, which can all be 
simulated in parallel. The electric domain also shows a decent 
speed up. Similar to the hydraulics example several parts of a 
larger network can be handled in parallel. Unfortunately, 
nearly no speed ups are obtained for the N-pendulum example. 
In the following we will further investigate this behavior. 

Looking at the N-pendulum equations, one can see that the 
single entries 𝐹𝑖(𝜑, 𝜓 ), 𝑖 =  1, … , 𝑁 can be evaluated in parallel, 
since they do not depend on each other. Nonetheless, nearly no 
speed up was obtained. This is due to the fact that in order to 
evaluate the 𝑀(𝜑)−1𝐹(𝜑, 𝜓) part, the solution of a linear system 
is required. This linear system can only be solved sequentially 
and dominates the computation time of the right hand side. 

Since we are using either CVode or DASSL as solver it is a 
straight forward idea to change the problem formulation (4) 
into a residual formulation of the form 

(
𝐼 0
0 𝑀(𝜑)) (

𝜑̇

𝜓̇
) = (

𝜓

𝐹(𝜑, 𝜓)
). 

Fig. 4 shows errors over computation time for implementations 
on one and two processors. Since, at the time of writing, 
OpenModelica does not support the residual formulation, the 
measurements were taken on a manual implementation. Com-
paring the results for the original implementation (termed ex-
plicit in the figure) and residual formulation (termed implicit) 
it is clear that especially for higher errors the residual formula-
tion is actually slower on one processor than the explicit formu-
lation. On the other hand, the residual formulation actually 

benefits from parallelization, resulting in a speed up of about 
1.5 over the one processor implementation. 

The fact that the residual formulation actually takes longer 
to solve than the explicit formulation was already observed in 
[25]. The reason for this is that the solver needs significantly 
more Jacobian evaluations than in the explicit case. The author 
of [25] proposed a change in the Jacobian update strategy to 
overcome this problem. Given the Jacobian of the residual for-
mulation 

𝐽𝑟𝑒𝑠  = 𝛼 (
𝐼 0
0 𝑀(𝜑)) − (

0 𝐼
𝜕𝐹(𝜑, 𝜓)

𝜕𝜑
+

𝜕𝑀(𝜑)

𝜕𝜑
𝜓̇

𝜕𝐹(𝜑, 𝜓)

𝜕𝜓
) , 

where 𝛼 is a method parameter, which is proportional to 1/ℎ 
with ℎ the actual step size, the idea is to update only the first 
summand of 𝐽𝑟𝑒𝑠 whenever the stepsize and, therefore, 𝛼 
changes. The effects of this change are twofold. First, the evalu-
ation costs for the Jacobian are decreased, since no finite differ-
encing is necessary. Second, because the Jacobian matrix is up-
dated proactively, actually fewer convergence failures occur 
and, therefore, fewer Jacobian re-evaluations are required. The 
effect of this improved update strategy can be seen in Fig. 4 (re-
sults denoted update). The calculations are faster than in the ex-
plicit case even on one processor while the good parallel per-
formance is pertained. Compared with the explicit formulation 
on one processor, a speed up of about 2.4 can be reached on two 
processors. We later found out that Arnold et al. [14] proposed 
the same solution. 
 

5 CONCLUSIONS 

In this work we examined several approaches for paralleliza-

tion with the intend of using them in a general multibody sys-

tem simulation code. From our experiments we can offer the 

following suggestions: 

 If your code permits the residual formulation use it to-

gether with the presented parallelism across the sys-

tem approach. 

 Use sparse linear algebra, whenever your problem per-

mits it. 

 If you have further processors available, using the par-

allel evaluation of the Jacobian results in a further 

speed up of 1.1 - 1.2.  

 A sophisticated implementation of the parallel peer 

method might also result in reasonable speed ups. 

Such a method could further be enhanced by parallel-

ism across the system and the parallel evaluation of the 

Jacobian. 
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